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Abstract

This paper investigates the effect of heating or cooling from below on the development of gravitactic bioconvection in a square enclo-
sure with stress free sidewalls. The governing equations are the Navier–Stokes equations with the Boussinesq approximation, the diffu-
sion equation for the motile microorganism and the energy equation for the temperature. The control volume method is used to solve
numerically the complete set of governing equations. It was found that the suspension is destabilized by heating from below and stabi-
lized by cooling from below. A transition from a subcritical bifurcation to a supercritical bifurcation was observed in the case of heating
from below when the thermal Rayleigh number was increased.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Bioconvection is the spontaneous pattern formation in
suspensions of microorganisms which are little denser than
water and move randomly, but on the average, upwardly
against gravity. Up swimming of microorganisms is gener-
ally a response to an external force field such as gravity or
biochemical stimulus such as gradient of oxygen concentra-
tion. Due to up swimming, the top layer of the suspension
becomes denser than the layer below, resulting in an unsta-
ble density distribution. This may lead to a convective
instability and formation of convection patterns similar
to the patterns observed in Bénard convection. Theoretical
models of bioconvection for different types of motile micro-
organisms have been developed in various recent publica-
tions [1–3]. For a review of the fundamental work in this
area, see Pedley and Kessler [4] and Hill and Pedley [5].

Rational continuum models for a suspension of purely
gravitactic microorganisms have been formulated and ana-
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lysed by Childress et al. [6]. The formulation includes the
Navier–Stokes equations with the Boussinesq approxima-
tion for an incompressible fluid and the microorganism
conservation equation. A numerical study based on the
equations derived by Childress et al. [6] was presented by
Fujita and Watanabe [7]. They discretized the equations
using finite differences method with a spatially staggered
grid. They found that the system of bioconvection can lead
into chaotic behavior via a sequence of bifurcations by
increasing the Rayleigh number. The preferred wavenum-
ber of gravitactic bioconvection in a rectangular cavity
was studied by Harashima et al. [8] who carried out numer-
ical experiments to show that the system evolves in the
direction of intensifying downward advection of micro-
organisms and reducing the total potential energy of the
system.

Ghorai and Hill [9–12] studied gyrotactic bioconvection
in a series of papers using a vorticity–stream function for-
mulation of the basic model first introduced by Pedley et al.
[13]. They examined the development and instabilities of
two-dimensional gyrotactic plumes. Cases with different
initial conditions and different width-to-height ratios of a
deep enclosure were compared.
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Nomenclature

A cavity aspect ratio, A = L/H
Dc cell diffusivity
~g gravitational acceleration
H cavity height
~J dimensionless flux of microorganisms
~k unit vertical vector
L cavity width
Le Lewis number, Le = a/Dc

n dimensionless cell concentration
�n average cell concentration
~n unit normal vector to the boundaries
p dimensionless pressure
Pe bioconvection Peclet number, Pe = HVc/Dc

Ra bioconvection Rayleigh number, Ra ¼
g#Dq�nH 3=qmDc

RaT thermal Rayleigh number, RaT = gbDTH3/ma
Sc Schmidt number, Sc = m/Dc

T dimensionless temperature
t dimensionless time
~u dimensionless fluid velocity

Vc gravitactic cell velocity
(x,y) dimensionless coordinate system

Greek symbols

a thermal diffusivity
b volume expansion coefficient
x dimensionless vorticity
l dynamic viscosity of the suspension
m kinematic viscosity of the suspension
qw water density
qc cell density
Dq difference between cell and water densities,

Dq = qc � qw

# cell volume
w dimensionless stream function

Superscripts
0 dimensional variable
sub subcritical
sup supercritical

1436 Z. Alloui et al. / International Journal of Heat and Mass Transfer 50 (2007) 1435–1441
Recently, a number of theoretical analyses of thermo-
bioconvection of a suspension of gyrotactic and oxytactic
microorganisms have been carried out by Kuznetsov
[14–16]. Kuznetsov [14] investigated the effect of the
temperature gradient on the stability of a suspension of
motile gyrotactic microorganisms in a fluid layer. It is
suggested that this problem may be relevant to motile
thermophilic microorganisms that live in hot springs. The
author found that a suspension of gyrotactic microorgan-
isms in a horizontal fluid layer heated from below is less
stable than the same suspension under isothermal
conditions.

Nield and Kuznetsov [17] studied the case where the
layer is cooled from below. They present a linear stability
analysis of a suspension of gyrotactic microorganisms in
fluid layer of finite depth. They found that cooling from
below stabilizes the suspension and oscillatory convection
is possible in certain circumstances. The present authors
carried out a linear stability analysis of the thermo-biocon-
vection in suspension of gravitactic microorganisms in
shallow fluid layers [18]. The effect of heating or cooling
below on the stability was investigated. They found that
the thermal effect may stabilize or destabilize the suspen-
sion and change the wave length of the bioconvection
pattern.

We see from this brief review that there are as yet no
numerical simulations of thermo-bioconvection flows
above the critical Rayleigh numbers, all studies considered
only the analytical solutions of the stability problem. This
paper is concerned with the numerical investigation of the
development of thermo-bioconvection in a rectangular
enclosure with stress free sidewalls. Our interest will be
focused on the effect of heating or cooling from below on
the bifurcation diagrams of the suspension.

2. Mathematical formulation

The system consists of a suspension of gravitactic micro-
organisms enclosed in a two-dimensional rectangular
cavity of width L and height H referred to Cartesian
coordinates (x0,y0) with the y0 axis pointing vertically
upwards. The left and right walls of the cavity are stress-
free and the top and bottom walls are rigid. There is no flux
of cells through any of the walls. The computational
domain and the thermal boundary conditions are shown
in Fig. 1.

The equations solved are the two-dimensional Navier–
Stokes equations with Boussinesq approximations, cell
conservation equation and energy equation:

r�~u0 ¼ 0 ð1Þ

qw

o~u0

ot0
þqwr�ð~u0~u0Þ ¼�rp0 þlr2~u0 þ#Dqn0~g�qwbðT 0 �T 0Þ~g

ð2Þ
on0

ot0
¼�r~J 0 with ~J 0 ¼ ð~u0 þV c

~kÞn0 �Dcrn0 ð3Þ
oT 0

ot0
þr� ð~u0T 0Þ ¼ ar2T 0 ð4Þ

The equations are scaled using the height H as the
length-scale, Dc/H as the velocity scale, �n as the concentra-
tion scale and DT as the temperature scale. By using the
vorticity stream function formulation, we deduce the
dimensionless system of coupled equations:



Fig. 1. Computational domain and thermal boundary conditions.

Table 1
Grid independence study with RaT = 0, Sc = 1, Pe = 10 and Ra = 103

Nx � Ny 21 � 21 41 � 41 61 � 61 81 � 81

wmax 5.559 5.572 5.577 5.579
nmax 21.061 18.059 17.239 17.082

Table 2
Validation of the code with the case of double diffusion for the case
A = 1.5, RaT = 40,000, Ras = �105, Pr = 1, Le = 101/2 [20]

wmax wmin Num Shm Nx � Ny Dt

Mamou et al.
[20]

10.126 �10.126 2.546 3.741 24 � 20 2 � 10�4

This code 10.090 �10.090 2.533 3.726 61 � 41 1 �10�3

(%) Variation 0.36 0.36 0.51 0.40
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x ¼ �r2w ð5Þ
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where Sc = m/Dc, the Schmidt number, Ra ¼ g#Dq�nPeH 3=
qmDc, the bioconvection Rayleigh number, RaT =
gbDTH3/ma, the thermal Rayleigh number, Le = a/Dc, the
Lewis number, and Pe = HVc/Dc, the bioconvection Peclet
number are the governing parameters of the problem.

We impose rigid, no-slip boundary conditions at the
bottom and top walls and assume that the other bound-
aries are stress-free, so that

w ¼ 0;
ow
oy
¼ 0 at y ¼ 0; 1 ð9Þ

w ¼ 0;
o2w
ox2
¼ 0 at x ¼ 0;A ð10Þ

At the impermeable boundaries, the condition of zero-flux,
are applied, i.e.,

~J �~n ¼ 0 at x ¼ 0;A and y ¼ 0; 1 ð11Þ
while the thermal boundary conditions are

T ¼ 1 at y ¼ 0 ð12Þ

T ¼ 0 at y ¼ 1 ð13Þ
oT
ox
¼ 0 at x ¼ 0; A ð14Þ
The initial condition is given as follows

n ¼ �n; T ¼ 0 at t ¼ 0 ð15Þ
3. Numerical procedure

The control volume method [19] is used to discretize the
governing equations (5)–(8) with a uniform staggered grid.
The stream function is stored on one set of nodes and the
vorticity, concentration and temperature are stored on
another set of nodes. The discretized equations are derived
using the central differences for spatial derivatives and
backward differences for time derivatives. A line-by-line tri-
diagonal matrix algorithm with relaxation is used in con-
junction with iteration to solve the nonlinear discretized
equations. We consider that convergence is reached when

jf mþ1
i;j � f m

i;jj
max jf m

i;jj
6 e ð16Þ

where f corresponds to the variables (x,w,n,T) and e is the
prescribed tolerance, m is the iteration number, and i, j de-
note the grid points. To check the grid independence of the
solutions, grid size was varied from 21 � 21 to 81 � 81.
The result of this study is presented in Table 1. We can
see that the variation in the last two cases is less than
3.5 � 10�4, which is negligibly small. Hence, the results
presented here are obtained for a square enclosure
with 61 � 61 grid size (Dx = Dy = 0.016), Dt = 0.001 and
e = 10�6.

The code was validated with the case of double diffusion
for the case A = 1.5, RaT = 40000, Ras = �105, Pr = 1,
Le = 101/2 [20]. The results showed that the present code
reproduced exactly the same iso-patterns of Q,T and S

(not shown here). Despite the fact that the referenced study
was carried out by finite element method and ours by con-
trol volume method, the quantitative comparison presented
in Table 2 shows very good agreement for wmax, wmin, as
well as for Nusselt and Sherwood numbers, Num and
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Shm. As a further test, we run the code to simulate the
Bénard problem [21] and found excellent agreement, which
we will present later.

4. Results and discussion

Computations are performed for the following values of
dimensionless parameters: Sc = 1, Le = 1, Pe = 10, which
correspond to typical bioconvection cases with known
microorganism characteristics (e.g. [22]) and RaT and Ra

are variable. Fig. 2 displays the bifurcation diagram (wmax

vs. RaT) for the case of no bioconvection, Ra = 0. A bifur-
cation between purely conductive and convective states is
clearly seen at around the Rayleigh number of 1708, which
is the critical Rayleigh number of a horizontal fluid layer
heated from below by a constant temperature. This situa-
tion corresponds to the classical Bénard problem, men-
tioned earlier [21].

Fig. 3 shows the bifurcation curve (wmax vs. Ra) for the
case of isothermal cavity (RaT = 0). This figure is obtained
Fig. 2. Bifurcation diagram for Ra = 0 (no bioconvection).

Fig. 3. Bifurcation diagram for RaT = 0 (no thermal effect).
by beginning the simulation with the diffusion state (i.e. no
convection) as initial condition, gradually increasing the
Rayleigh number until convection arises, and continuing
to obtain solutions at higher Rayleigh numbers with the
solution at the previous (lower) Rayleigh number as initial
condition. Once the solution at the highest Rayleigh num-
ber is obtained, we proceed backward to obtain solutions
at lower Rayleigh numbers using the solution at the previ-
ous (higher) Rayleigh number as initial condition. Similar
to the case of a vertical cylinder [23], it is found that the
bioconvection arises (as the Rayleigh number Ra is
increased) at a certain supercritical value, Rasup

c ¼ 1100
and disappears suddenly (as Ra is decreased) at a certain
subcritical value, Rasub

c with Rasub
c < Rasup

c . This behaviour
is typical of a subcritical bifurcation. It has also been
observed experimentally by Mogami et al. [24] which ana-
lysed the temporal and spatial changes in bioconvection
pattern with varying gravity. They found a lower thresh-
old, i.e. a lower critical Rayleigh number, for decreasing
gravity than for increasing gravity.
Fig. 4. Bifurcation diagram for RaT = 0,500,1000 and 1708.

Fig. 5. Bifurcation diagram for RaT = 0, �1000, �2000 and �3000.
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The effect of heating from below on the form of bifurca-
tion diagram is presented in Fig. 4 for four fixed values of
RaT of 0, 500, 1000 and 1708. The thermal Rayleigh num-
ber RaT characterizes the temperature difference between
the horizontal walls of the cavity. Thus, as can be observed
from Fig. 4, the onset of convection is strongly subcritical
when RaT ¼ 0 ðRasub

c ¼ 1100Þ, however we report a transi-
tion from subcritical bifurcation to supercritical bifurca-
tion when the thermal Rayleigh number is increased from
0 to 1708: at RaT = 500, it is still subcritical, Rasub

c ¼ 550,
it becomes supercritical Rasup

c ¼ 320 at RaT = 1000 and
finally it is Rasup

c ¼ 0 at RaT = 1708.
The bifurcation diagrams for the case of cooling from

below is presented in Fig. 5 for the values of thermal Ray-
leigh number of 0,�1000,�2000 and �3000. The results
indicate that the bifurcation remains subcritical when the
thermal Rayleigh number is decreased from 0 to �3000:
it is Rasub

c ¼ 1100 at RaT = 0, it is Rasup
c ¼ 1490 at

RaT = �1000, it is Rasup
c ¼ 1760 at RaT = �2000 and

finally it is Rasup
c ¼ 1980 at RaT = �3000.

To examine the flow, concentration and temperature
patterns during transition from subcritical to supercritical,
the streamlines, isoconcentration and isotherms for RaT of
0, 500 and 1000 of Fig. 4 are plotted in Fig. 6. We see that
for RaT = 0, the subcritical Rayleigh number is Rasub

c ¼ 567
with wmax = 1.46. The convective cell is asymmetric and
shifted to the right corner, and following the same pattern,
the cells are concentrated to the right corner. The isotherms
show quasi-convection regime following the same trend of
the streamlines. For RaT = 500, the subcritical Rayleigh
Fig. 6. Streamlines, isoconcentration and isotherm for RaT = 0,500
and 1000 at their subcritical Rasub

c of Fig. 4. (a) RaT¼0; Rasub
c ¼ 567;

wmax ¼ 1:46, (b) RaT ¼ 500; Rasub
c ¼ 468; wmax ¼ 0:99, (c) RaT ¼ 1000;

Rasub
c ¼ 315; wmax ¼ 0:08.
number is slightly decreased to Rasub
c ¼ 468 with a reduced

strength of circulation of wmax = 0.99. We can see however
that the basic pattern did not change in all three isolines for
RaT = 0 and 500. For RaT = 1000, the critical Rayleigh
number is Rasub

c ¼ 315 and the strength of circulation is
reduced considerably to wmax = 0.08. The convective cell
is symmetric, so is the cell concentration at the top bound-
ary and the isotherms show a conduction dominated
regime. Thus, it is clearly seen that for RaT = 0 and 500
the conduction regime is not reached showing the presence
of a supercritical state. In contrast, for RaT = 1000, the
conduction regime is reached at subcritical state.
Fig. 7. Effect of thermal Rayleigh number on subcritical bioconvection
Rayleigh number.

ψ n T

ψ n T

ψ n T

Fig. 8. Streamlines, isoconcentration and isotherm for Ra = 103: (a)
RaT = 4 � 103, wmax = 7.63, (b) RaT = 0, wmax = 4.97, (c) RaT = �4 � 103,
wmax = 1.35.
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The subcritical Rayleigh number, Rasub
c of Figs. 4 and 5

as a function of the thermal Rayleigh number, RaT is
presented in Fig. 7. It is clear that the subcritical biocon-
vection Rayleigh number decreases with the thermal
Rayleigh number. This means that increasing the tempera-
ture gradient between top and bottom of the enclosure
destabilizes the suspension and helps to develop the
bioconvection.

The influence of the thermal Rayleigh number, RaT

from �4000 to +4000 is illustrated in Fig. 8, in terms of
the streamlines (left), isoconcentration (center) and iso-
therms (right) for Ra = 103. Since both Rayleigh numbers
are high and RaT corresponds to cooling as well as heating
from below, we expect to see clearly the influence of RaT

for both cases on the iso-patterns, which is indeed the case:
the thermal Rayleigh number has a strong effect on the
T
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Fig. 9. Effect of thermal Rayleigh number on horizontal and vertical profil
respectively, for Ra = 103.
convective flow patterns. This is examined in conjunction
with the horizontal profiles of w, n and T at the mid-height
of enclosure (y = 0.5), shown in Fig. 9a–c, and also with
the vertical profiles of w, n and T at the mid-width of enclo-
sure (x = 0.5) shown in Fig. 9d–f. For cooling from below,
we notice that the convective cell shifts to the top right of
the cavity as seen in Fig. 8c, and the horizontal and vertical
profiles of the stream function become asymmetrical,
Fig. 9a and d. On the other hand, the heating from below
tends to center the convective cell in the cavity and thus
makes the profiles symmetrical. We can also note that for
heating from below, the value of the stream function
increases, which is to say, the convection is reinforced.
For cooling from below, the stream function is decreased
and the flow strength is weakened. We see in Fig. 9b and
e that the gradient of concentration of microorganisms
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es at the mid-height (y = 0.5) and mid-width (x = 0.5) of the enclosure,
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remains high at the upper boundary and its maximum is at
the right corner of the cavity. For cooling from below, in
Fig. 9f, the vertical temperature profile becomes almost
linear and approaches the state of pure conduction. This
is expected in view of the isotherms which are almost
vertical lines in Fig. 8c.

5. Conclusion

Numerical simulations of thermo-bioconvection in a
square enclosure were carried out. The vertical walls of
the cavity are assumed to be stress-free and insulated, while
horizontal boundaries are rigid. The vertical gradient of
temperature is established by maintaining the horizontal
boundaries at fixed temperatures. Both cases of heating
or cooling from below were examined. The governing
equations are integrated numerically using the control vol-
ume method. The present results exhibit the influence of
thermo-effects on the bifurcation diagram and the flow
structure. We have reported a transition from a subcritical
bifurcation to a supercritical bifurcation when the thermal
Rayleigh number is increased from 0 to 1708, while the
bifurcation remains subcritical when the cooling from
below is applied. Our result indicates also that the heating
from below destabilizes the suspension and cooling from
below stabilizes it.
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